Torc Robotics teams with Daimler Trucks to design, build million-mile vehicles

At least in theory, the robotaxi business should be easy. Consumers hail a ride via an app. They go from point A to point B. Trucking, on the other hand, is more complicated.

“About the only thing most carriers have in common is you see them driving down the highway,” Culhane said. “Freight is a massively fragmented industry. The way they do business, the types of stuff they carry, the way they route their networks. Everything is variable.”

Fleming and Culhane began searching for a partner with that foundational knowledge in place. In March 2019, Daimler Trucks became a majority shareholder in Torc. Much like General Motors and Cruise, Torc operates independently from the German automaker. But its future is tied to access to Daimler’s customers.

Daimler and Torc are engaging with fleet executives to understand how their mechanics can be trained and certified to calibrate sensors. They’re recognizing what data can be extracted to perform predictive maintenance, and considering how to best design hardware so it can be repaired faster at dealerships. Perhaps most importantly, Daimler and Torc are working together to reinvent the Cascadia chassis from the ground up.

“Trying to do a retrofit solution, you’re not going to get that level of chassis control you need,” Culhane said. “So the OEM partnership is very critical in this space.”

Working together, they can better answer two crucial questions: How can they build trucks and hardware that last for more than a million miles on the road, and how can they best equip trucks to handle 20 to 23 hours of nonstop driving?

The latter ranks as a particularly ambitious target, but one that’s plausible because of Daimler Trucks’ concurrent work in hydrogen fuel cells. Daimler has been bullish on fuel cells for powering freight movement, rather than battery-electric vehicles that require frequent charging.

But the benefits of such long routes potentially cascade atop each other. Consumers get goods faster. Trucks can ply their routes through the night, thus reducing congestion during the day. Nocturnal travel could allow for slower speeds, which offer fuel savings on top of the 10 to 13 percent fuel-consumption reductions many estimate self-driving trucks will achieve.

Tests are underway. It might be a long time before a self-driving system can be married with hydrogen fuel cell technology to unlock such lengthy routes. Regulations that limit hours of service would need to be revamped. Infrastructure needs to be built. The technical challenges of autonomy itself make for an arduous journey to the self-driving future.

Torc, in business for 15 years, is ready for the long haul.

“This is not an overnight thing,” Culhane said. “It’s a lot of hard work that takes this from a great demo to an actual product, and from that, to scalability and sustainability. You have to be able to stay on that road for a long time.”

File source

Show More

Related Articles

Back to top button